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Experience with Model Predictive Control 
and Model-Based Reinforcement Learning
Auralee Edelen
Mar. 1 2018, ICFA Workshop on ML for Particle Accelerators

Work with Sandra Biedron, Daniel Bowring, Brian Chase, David Douglas, Jonathan Edelen, Chip Edstrom, Denise 
Finstrom, Henry Freund, Stephen Milton, Dennis Nicklaus, Jinhao Ruan, Jim Steimel, Chris Tennant, Peter van der 
Slot, and many others
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Online Modeling

• Use a machine model during operation
•

• Ideally:
• Fast-executing, but accurate enough to be useful
• Use measured inputs directly from machine
• Combine a priori knowledge + learned parameters

• Applications:
• A tool for operators + virtual diagnostic
• Predictive control 
• Help flag aberrant behavior
• Bonus: control system development
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Online Modeling

• Use a machine model during operation
•

• Ideally:
• Fast-executing, but accurate enough to be useful
• Use measured inputs directly from machine
• Combine a priori knowledge + learned parameters

• Applications:
• A tool for operators + virtual diagnostic
• Predictive control 
• Help flag aberrant behavior
• Bonus: control system development

One approach: faster modeling codes
Simpler models (tradeoff with accuracy)

analytic calculations

Parallelization and GPU-acceleration of existing codes
PARMILA à HPSim

elegant

Improvements in underlying modeling algorithms

I. V. Pogorelov, et al., IPAC15, MOPMA035

X. Pang, PAC13, MOPMA13

e. g.  J. Galambos, et al., HPPA5, 2007
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Train on results from slow, high-fidelity simulations
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Yields a fast-executing model that can be 
used operationally, but approximates 
behavior from slower, high-fidelity simulations 
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Online Modeling

Another approach: machine learning model
Once trained, neural networks can execute quickly

Train on results from slow, high-fidelity simulations

Train on measured results

• Use a machine model during operation
•

• Ideally:
• Fast-executing, but accurate enough to be useful
• Use measured inputs directly from machine
• Combine a priori knowledge + learned parameters

• Applications:
• A tool for operators + virtual diagnostic
• Predictive control 
• Help flag aberrant behavior
• Bonus: control system development

(fractions of a second)

Yields a fast-executing model that can be 
used operationally, but approximates 
behavior from slower, high-fidelity simulations 
(e.g. PIC codes, plasma acc., space charge)

A. L. Edelen, et al. NAPAC16, TUPOA51
An initial study at Fermilab:

One PARMELA run with 2-D space charge: ~ 20 minutes
Neural network model: ~ a millisecond

One approach: faster modeling codes
Simpler models (tradeoff with accuracy)

analytic calculations

Parallelization and GPU-acceleration of existing codes
PARMILA à HPSim

elegant

Improvements in underlying modeling algorithms

I. V. Pogorelov, et al., IPAC15, MOPMA035

X. Pang, PAC13, MOPMA13

e. g.  J. Galambos, et al., HPPA5, 2007



Auralee Edelen,  ICFA Mini-Workshop on ML for Particle Accelerators,  Feb. 27 – Mar. 3, 2018 at SLAC

Model Predictive Control (Prediction + Planning)
Basic concept: 

1. Use a predictive model to assess the outcome of 
possible future actions

2. Choose the best series of actions

3. Execute the first action

4. Gather next time step of data

5. Repeat
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Neural Network Policies and Reinforcement Learning

Can train on models first to get a
good initial solution before deployment

Actor-only Methods

• Actor is a control policy 
• Maps states to actions
• Reward provides training signal

• Critic maps states or state/action pairs to 
an estimate of long-term reward

• Could be a NN, tabular, etc. 
• Critic provides training signal to actor

Without actor: use an optimization algorithm 
with the critic

Teacher

Can use supervised learning to first approximate the 
behavior of a different control policy

Actor-Critic Methods
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A few examples …
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Dealing with “Long-Term” Time Dependencies: 
Resonant Frequency Control in Normal Conducting Cavities

Photo: P. Stabile

Photo: J. Steim
el

RF electron gun at the Fermilab Accelerator 
Science and Technology (FAST) facility

Radio frequency quadrupole (RFQ) for the 
PIP-II Injector Test

“long term” in this case means responses lasting many 
minutes (e.g. 30), with control actions at 0.5 Hz and 1 Hz
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Why does this matter for normal-conducting cavities?

The LLRF system will compensate for detuning by increasing forward power
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But…
• Ability to do this bounded by the amplifier specs

• If detuned beyond RF overhead à interrupt normal operations

• RF overhead adds to initial machine cost and footprint

• Using additional RF power à increasing operational cost

• Increased waste heat into cooling system à increasing operational cost

The LLRF system will compensate for detuning by increasing forward power

Why does this matter for normal-conducting cavities?
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Temperature Control for the RF Photoinjector at FAST

Resonant frequency controlled via temperature 

PID control is undesirable in this case:
• Long transport delays and thermal responses
• Recirculation leads to secondary impact of disturbances
• Two controllable variables: heater power + valve aperture

Gun Water System Layout

Work with B. Chase, D. Edstrom, E. Harms, J. Ruan, J. Santucci, FNAL
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Existing Feedforward/PID Controller Model Predictive Controller

Temperature Control for the RF Photoinjector at FAST

Resonant frequency controlled via temperature 

PID control is undesirable in this case:
• Long transport delays and thermal responses
• Recirculation leads to secondary impact of disturbances
• Two controllable variables: heater power + valve aperture

Applied model predictive control (MPC) with a neural network model 
trained on measured data:  ~ 5x faster settling time + no large overshoot

A. L. Edelen et al., TNS, vol. 63, no. 2, 2016        A.L. Edelen et al., IPAC ‘15Note that the oscillations are largely due to the transport delays and water recirculation, rather than PID gains

Gun Water System Layout

Work with B. Chase, D. Edstrom, E. Harms, J. Ruan, J. Santucci, FNAL
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PIP-II Injector Test RFQ
Specification for GDR: 3-kHz maximum frequency shift

Range of RF duty factors and pulse patterns (up to CW)

-16.7 kHz/ºC in the vanes and 13.9 kHz/ºC in the walls*
* A. R. Lambert et al., IPAC’15, WEPTY045

ANSYS simulation data 
courtesy A. Lambert, LBNL

Work with D. Bowring, B. Chase, J. Edelen, D. Finstrom, D. Nicklaus, J. Steimel, FNAL

variable heating
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Added Motivation: RFQ Detuning in CW Mode

Uncontrolled PI Frequency Control

For a small change in cavity field (55 kV to 58 kV)…



Auralee Edelen,  ICFA Mini-Workshop on ML for Particle Accelerators,  Feb. 27 – Mar. 3, 2018 at SLAC

Not accurate enough for control with MPC!

Created a fast first-principles model, so why not use that in MPC instead of a NN?

even after extensive tuning of uncertain 
parameters using an optimizer

What about a simple first-principles model, or a learned linear model?

J. Edelen, A. Edelen, et al. TNS 64, vol. 2, (2017)

measured input data à first-principles model 4 ms pulse duration, 10 Hz rep rate            variety of valve and power settings

4.01 kHz max error

not good enough!

1.67 kHz RMS error

What about a simple first-principles model, or a learned linear model?

J. Edelen, A. Edelen, et al. TNS 64, vol. 2, (2017)

measured input data à first-principles model 4 ms pulse duration, 10 Hz rep rate            variety of valve and power settings

4.01 kHz max error

not good enough!

1.67 kHz RMS error

First principles model 
comparison with measured 
data

Model needs to be sufficiently accurate for MPC

Assessed performance using measured input data:
4 ms RF pulse duration, 10 Hz rep rate

variety of valve and power settings

1.67 kHz RMS error
4.01 kHz max error

Maximum acceptable detuning is 3 kHz

Also looked at a linear learned model: still too poor
1.13 kHz RMS,  2.66 kHz max error
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Initial Neural Network Modeling
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Initial NN Modeling for RFQ:  Same as for FAST
wanted to make sure we could model the response before moving forward

A.L. Edelen et al., IPAC ‘16
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Recurrent NN is physically well-motivated



Auralee Edelen,  ICFA Mini-Workshop on ML for Particle Accelerators,  Feb. 27 – Mar. 3, 2018 at SLAC

Recurrent NN is physically well-motivated

4000 prior time steps x7 features 
à 600 time steps prediction horizon



Auralee Edelen,  ICFA Mini-Workshop on ML for Particle Accelerators,  Feb. 27 – Mar. 3, 2018 at SLAC

Recurrent NN is physically well-motivated

Long Short-term Memory Network?

4000 prior time steps x7 features 
à 600 time steps prediction horizon
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Recurrent NN is physically well-motivated

Long Short-term Memory Network?

4000 prior time steps x7 features 
à 600 time steps prediction horizon

200-600 prior samples
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Recurrent NN is physically well-motivated

Long Short-term Memory Network?

4000 prior time steps x7 features 
à 600 time steps prediction horizon

200-600 prior samples

Can still be made to work à but not stably enough for online updating
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• Had to run on Fermilab controls network machines
• This means: limited processing speed and memory
• Found that RNN is too computationally intensive
• Found that cycling over one-step-ahead predictions of a 

feedforward net is too computationally intensive
• Limited funds to purchase/support a new computer

A Computationally Efficient Model for Execution?
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• Had to run on Fermilab controls network machines
• This means: limited processing speed and memory
• Found that RNN is too computationally intensive
• Found that cycling over one-step-ahead predictions of a 

feedforward net is too computationally intensive
• Limited funds to purchase/support a new computer

• First solution: sparser input history/prediction 
horizon

• Second solution: predict entire horizon in one 
iteration

• Third solution: NN policy mimicking MPC

Built a python-based control framework
• Executes on controls network linux computer
• PI control in regular operational use
• Designed to be portable + modular
• Preparing for test of MPC

A Computationally Efficient Model for Execution?
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Other Stumbling Blocks…
• One-step ahead: 106 Hz MAE, 796 Hz max

• 600-step ahead:  339 Hz MAE, 1588 Hz max
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Other Stumbling Blocks…
• One-step ahead: 106 Hz MAE, 796 Hz max

• 600-step ahead:  339 Hz MAE, 1588 Hz max

• Found that MPC exploits the FF model quirks too much. Some options:

• Do fewer time steps ahead and deal with longer control interval while looping 
through horizon à very clunky

• Linearize around operating point as before à might as well use linear MPC

• Restrict MPC options for valve settings more à lose ability to react quickly to 
trips
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Other Stumbling Blocks…
• One-step ahead: 106 Hz MAE, 796 Hz max

• 600-step ahead:  339 Hz MAE, 1588 Hz max

• Found that MPC exploits the FF model quirks too much. Some options:
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through horizon à very clunky
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• Restrict MPC options for valve settings more à lose ability to react quickly to 
trips

• Discovered that some of the early data taken during pulsed 
commissioning was bad (LLRF phase calibrations were not correct à had 
been re-set to wrong /old values!)
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Other Stumbling Blocks…
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• Do fewer time steps ahead and deal with longer control interval while looping 
through horizon à very clunky

• Linearize around operating point as before à might as well use linear MPC

• Restrict MPC options for valve settings more à lose ability to react quickly to 
trips

• Discovered that some of the early data taken during pulsed 
commissioning was bad (LLRF phase calibrations were not correct à had 
been re-set to wrong /old values!)

• Discovered ambient humidity and temperature need to be explicitly 
predicted: ~1 kHz error reduction (vs. MPC standard of assuming 
constant)
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Other Stumbling Blocks…
• One-step ahead: 106 Hz MAE, 796 Hz max

• 600-step ahead:  339 Hz MAE, 1588 Hz max

• Found that MPC exploits the FF model quirks too much. Some options:

• Do fewer time steps ahead and deal with longer control interval while looping 
through horizon à very clunky

• Linearize around operating point as before à might as well use linear MPC

• Restrict MPC options for valve settings more à lose ability to react quickly to 
trips

• Discovered that some of the early data taken during pulsed 
commissioning was bad (LLRF phase calibrations were not correct à had 
been re-set to wrong /old values!)

• Discovered ambient humidity and temperature need to be explicitly 
predicted: ~1 kHz error reduction (vs. MPC standard of assuming 
constant)
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Decided to switch back to NN control policy approach
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Even before that … had to actually put the infrastructure in place to use 
python with overarching lab control system (ACNET)



Auralee Edelen,  ICFA Mini-Workshop on ML for Particle Accelerators,  Feb. 27 – Mar. 3, 2018 at SLAC

Built a python-based control framework
• Executes on controls network linux computer
• PI control in regular operational use
• Designed to be portable + modular
• Preparing for test of MPC

Built a python-based control framework
• Executes on controls network linux computer
• PI control in regular operational use
• Designed to be portable + modular
• Preparing for test of MPC• Supports the use of ML libraries
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Some lessons learned

• Model-based approaches require a lot of effort (ahead of any ML) à payoff in terms of 
performance needs to be worth it to justify it

• “Simple” physics does not equal simple control/modeling! à esp. when one 
needs to take into account changes over time relative to control interval

• Need appropriate infrastructure (and culture)

• Control systems deployment à don’t expect existing controls hardware/firmware to be 
up to the task for ML (especially for old facilities)
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Another set of applications: fast switching between operating conditions
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Fast Switching Between Trajectories

JLab

• 76 BPMs, 57 dipoles, 53 quadrupoles 
• Traditional approach has never worked (linear response matrix)
• Rely on one expert for steering tune-up
• Want to specify small offsets in trajectory at some locations
• Didn’t initially have an up-to-date machine model available

Learn responses (NN model) from tune-up data 
and dedicated study time: 
dipole + quadrupole settings à predict BPMs 

Train controller (NN policy) offline using NN 
model: desired trajectory + present settings + BPM 
readbacks à change in dipole settings
(and penalize losses + large magnet settings)

Work with C. Tennant and D. Douglas, JLab
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Fast Switching Between Trajectories
• 76 BPMs, 57 dipoles, 53 quadrupoles 
• Traditional approach has never worked (linear response matrix)
• Rely on one expert for steering tune-up
• Want to specify small offsets in trajectory at some locations
• Didn’t initially have an up-to-date machine model available

Controller:
random initial states à on average within 0.2 
mm of center immediately using 8 dipoles

Model Errors for BPMs:
Training Set: 0.07 mm MAE    0.09 mm STD
Validation Set:    0.08 mm MAE    0.07 mm STD
Test Set: 0.08 mm MAE  0.03 mm STD

(Very) Preliminary Results:

Modeling Example 
(randomly selected a BPM 
out of the data set to plot)Learn responses (NN model) from tune-up data 

and dedicated study time: 
dipole + quadrupole settings à predict BPMs 

Train controller (NN policy) offline using NN 
model: desired trajectory + present settings + BPM 
readbacks à change in dipole settings
(and penalize losses + large magnet settings)
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Example of learning machine model 
from measured data alone (including tune-up data)

But what about a machine test?

Fast Switching Between Trajectories
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Example of learning machine model 
from measured data alone (including tune-up data)

But what about a machine test?
Started in 2012 à machine shut down 6 months later

• Short run (several weeks) in 2016 to gather data after 
substantial machine changes

• Unlikely to turn on again to be able to test

Do have an ok model in elegant now: 
• Still have mismatch, but can test adapting to new conditions

Fast Switching Between Trajectories
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Example of learning machine model 
from measured data alone (including tune-up data)

But what about a machine test?
Started in 2012 à machine shut down 6 months later

• Short run (several weeks) in 2016 to gather data after 
substantial machine changes

• Unlikely to turn on again to be able to test

Do have an ok model in elegant now: 
• Still have mismatch, but can test adapting to new conditions

Comparisons with standard approach? 
(integral feedback with inverted linear 
response matrix)

Main possible advantage of NN over 
standard approach:

• Adaptive control policy à can adjust without 
interfering with operation for response 
measurements as often

• Handling of trajectories away from BPM center 
(nonlinear)

• But, need to quantify this …

Fast Switching Between Trajectories
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Simulation study: switching between beam energies for a compact FEL

Would be nice to have a tool that can quickly give suggested 
settings for a given photon beam request, is valid globally, and can 

adapt to changes over time
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Motivation: Switching Between User Requests in FELs
• FEL facilities support a wide variety of scientific 

endeavors (e.g. imaging protein structures1, understanding 
processes like photosynthesis2, origin of material properties3)

• Need to accommodate requests for a wide variety of 
photon beam characteristics

• May switch as often as every few days

• Have save/restore settings, but these are discrete, and 
there can be some drift in the machine

• Time spent tuning = reduced scientific output for a 
given operational budget

[1] J.-P. Colletier, et al.,"De novo phasing with X-ray laser reveals mosquito larvicide BinAB structure," Nature , vol. 539, pp. 43–47, Sep. 2016.
[2] I. D. Young, et al., "Structure of photosystem II and substrate binding at room temperature,” Nature , vol. 540, pp. 453–457, Nov. 2016.
[3] M. P. Jiang, et al., "The origin of incipient ferroelectricity in lead telluride," Nature Communications, vol. 7, no. 12291, Jul. 2016.

e.g. the Linac Coherent Light Source
(image: lcls.slac.standford.edu)

Would be nice to have a tool that can quickly give suggested 
settings for a given photon beam request, is valid globally, and 
can adapt to changes over time
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Starting Smaller:  A Case Study

Compact, THz FEL design based on previously operational TEU-FEL 3 – 6 MeV electron beam
200 – 800 𝜇m photon beam

Previously operated at University of 
Twente in the Netherlands

Was going to be re-built at CSU: 
have simulation from design studies
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Starting Smaller:  A Case Study

This is an appealing system for an initial study because it has a small number of machine components, yet 
it exhibits non-trivial beam dynamics. 

Compact, THz FEL design based on previously operational TEU-FEL 3 – 6 MeV electron beam
200 – 800 𝜇m photon beam

Previously operated at University of 
Twente in the Netherlands

Was going to be re-built at CSU: 
have simulation from design studies
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Intermediate goal:  get the right beam parameters at the undulator entrance
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First: Learn a Model from Simulation Results 
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First: Learn a Model from Simulation Results 

Simulation in PARMELA

• Standard particle tracking code (numerical)
• Includes space charge (computationally expensive)
• Load EM field maps for cavities, solenoid, bucking coil
• Unfortunately: distribution restricted, source code not 

available, and compiled for windows à couldn’t just run 
a lot of interactions with controller on a cluster
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Decided to learn a neural network model from simulation:
• faster-executing than physics-based simulation
• can update with measured data
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Decided to learn a neural network model from simulation:
• faster-executing than physics-based simulation
• can update with measured data

More broadly: machine time is expensive, mistakes can be costly,
and simulations don’t always match the machine well 
∫àà Sample efficiency matters a lot (both with slow sim and machine)
à Learning a machine model using simulation results and updating

it with existing measurements can aid controller training

First: Learn a Model from Simulation Results

Simulation in PARMELA

• Standard particle tracking code (numerical)
• Includes space charge (computationally expensive)
• Load EM field maps for cavities, solenoid, bucking coil
• Unfortunately: distribution restricted, source code not 

available, and compiled for windows à couldn’t just run 
a lot of interactions with controller on a cluster
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Get Training Data from Simulation

Optimizer

Physics 
Simulation

settings
s

beam
parameters

p

repeat for different target energies 

Don’t always have a good physics-based model for particle 
accelerators, so what’s in the data archive of a real facility?  

Noisy data + tuning around roughly optimal settings
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Get Training Data from Simulation

Optimizer

Physics 
Simulation

settings
s

beam
parameters

p

repeat for different target energies 

all samples

Train Forward and Inverse NN Models

Forward 
Model

Leave out one 
energy range 
for validation

Don’t always have a good physics-based model for particle 
accelerators, so what’s in the data archive of a real facility?  

Noisy data + tuning around roughly optimal settings
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Get Training Data from Simulation

Optimizer

Physics 
Simulation

settings
s

beam
parameters

p

repeat for different target energies 

all samples

Train Forward and Inverse NN Models

Forward 
Model

Leave out one 
energy range 
for validation

Don’t always have a good physics-based model for particle 
accelerators, so what’s in the data archive of a real facility?  

Noisy data + tuning around roughly optimal settings

Want to use the existing data to initialize control 
policy
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Get Training Data from Simulation

Optimizer

Physics 
Simulation

settings
s

beam
parameters

p

repeat for different target energies 

all samples
converged samples
(optimal settings)

Train Forward and Inverse NN Models

Inverse 
Model

Forward 
Model

Leave out one 
energy range 
for validation

Don’t always have a good physics-based model for particle 
accelerators, so what’s in the data archive of a real facility?  

Noisy data + tuning around roughly optimal settings

Initial
Policy

Want to use the existing data to initialize control 
policy à model not invertible, but can pre-train policy 
with converged settings
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Training the Control Policy (v0)

• First: just want to switch to roughly correct settings
• Then, two options: efficient local tuning algorithms we already use, or online model/controller updating
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Training the Control Policy (v0)

• First: just want to switch to roughly correct settings
• Then, two options: efficient local tuning algorithms we already use, or online model/controller updating

NN Control Policy Update

Policy
Forward 
Model

Batch of 
pt

p'

(frozen)

cost C(pt , p', s')

add (s', p') to database D

s'

Cost: 
difference between p' and pt

penalize loss of transmission 
penalize higher magnet settings 

pt -- target beam parameters

s' -- predicted optimal settings

p' – predicted beam parameters



Auralee Edelen,  ICFA Mini-Workshop on ML for Particle Accelerators,  Feb. 27 – Mar. 3, 2018 at SLAC

Training the Control Policy (v0)

• First: just want to switch to roughly correct settings
• Then, two options: efficient local tuning algorithms we already use, or online model/controller updating

NN Control Policy Update

Policy
Forward 
Model

Batch of 
pt

p'

(frozen)

cost C(pt , p', s')

add (s', p') to database D

s'

Every nth iteration, take batch of s', p' sampled from D,
run through physics simulation, and update the model

Cost: 
difference between p' and pt

penalize loss of transmission 
penalize higher magnet settings 

pt -- target beam parameters

s' -- predicted optimal settings

p' – predicted beam parameters
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Training the Control Policy (v0)

• First: just want to switch to roughly correct settings
• Then, two options: efficient local tuning algorithms we already use, or online model/controller updating

NN Control Policy Update

Policy
Forward 
Model

Batch of 
pt

p'

(frozen)

cost C(pt , p', s')

add (s', p') to database D

s'

Then test policy directly on simulation

Every nth iteration, take batch of s', p' sampled from D,
run through physics simulation, and update the model

Cost: 
difference between p' and pt

penalize loss of transmission 
penalize higher magnet settings 

pt -- target beam parameters

s' -- predicted optimal settings

p' – predicted beam parameters
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Example of what the training data looks like
(quadrupoles shown in this case)

Initial Model and Policy
Training data from simulation:
• output from each iteration of Nelder-Mead, L-BFGS
• 12 beam energies between 3.1 – 6.2 MeV (7195 samples)
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Initial Model and Policy
Training data from simulation:
• output from each iteration of Nelder-Mead, L-BFGS
• 12 beam energies between 3.1 – 6.2 MeV (7195 samples)

Example of what the training data looks like
(quadrupoles shown in this case)

Model: 50-50-30-30 tanh nodes in hidden layers
- 8 inputs (rf power, rf phase, sol. strength, quads)
- 8 outputs (𝛼𝑥		,	𝛼𝑦 , 𝛽𝑥 , 𝛽𝑦	 , 𝜀𝑥	 , 𝜀𝑦 , E , Np)
- 5.7-MeV run used for validation set
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Initial Model and Policy
Training data from simulation:
• output from each iteration of Nelder-Mead, L-BFGS
• 12 beam energies between 3.1 – 6.2 MeV (7195 samples)

Example of what the training data looks like
(quadrupoles shown in this case)

Policy: 30-30-20-20 tanh nodes in hidden layers
- inputs/outputs opposite the above (except Np) 
- random target energies, 𝛼() = 0, 𝛽() = 0.106
- exclude 4.8 – 5.2 MeV range for validation

First study: focus on target 𝛼, 𝛽 for a given energy 

Model: 50-50-30-30 tanh nodes in hidden layers
- 8 inputs (rf power, rf phase, sol. strength, quads)
- 8 outputs (𝛼𝑥		,	𝛼𝑦 , 𝛽𝑥 , 𝛽𝑦	 , 𝜀𝑥	 , 𝜀𝑦 , E , Np)
- 5.7-MeV run used for validation set
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Initial Model and Policy Performance

Example of Model Performance 
on Validation Set

Summary of Model Performance
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Initial Model and Policy Performance

Controller ability to reach 𝛼(,) = 0 and 𝛽(,) = 0.106 in one iteration

Example of Model Performance 
on Validation Set

Summary of Model Performance
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Initial Model and Policy Performance

Controller ability to reach 𝛼(,) = 0 and 𝛽(,) = 0.106 in one iteration

What this means: for a given energy, the controller will immediately reach the desired beam size to within about 10% and 
the beam will be close to a waist, requiring minimal further tuning (assuming no substantial drift…)

Example of Model Performance 
on Validation Set

Summary of Model Performance

A.L. Edelen et al., FEL ‘17
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Presently finishing more complete study

• Including minimization of emittance + more freedom with  
injector settings
• Requires finer start-to-end adjustments, so more simulation data was needed
• Much larger network needed to capture relationships accurately in model

• Seeing how well it does with machine drift
• e.g. deviation between settings and real values, deviation in responses

• Other changes to setup
• More standard RL

• So far, only showed results for the electron beam

• Need to compare with other methods
• Esp. model-free RL methods, traditional online optimization

The effort of model creation may not scale well to larger facilities 
relative to performance gain

Example of Model Performance on Validation Set
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Some Practical Challenges

Training on Measured Data

Observed parameter range in archived data

Undocumented manual changes 
(e.g. rotating a BPM, Quad)

Relevant-but-unlogged variables

Availability of diagnostics
(old machines, camera servers, machine subsections)

Time on machine for characterization studies
(schedule + expense)

Ideal case: 
- comprehensive, high-resolution data archive
(e.g. including things like ambient temp./pressure)

- excellent log of manual changes

Need a sufficient* amount of reliable* data
(but not as much as is sometimes claimed in DL)

*large enough parameter range and set of examples to 
generalize well and complete the task

*esp. consistent!
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Some Practical Challenges

Training on Measured Data

Training on Simulation Data

Observed parameter range in archived data

Undocumented manual changes 
(e.g. rotating a BPM, Quad)

Relevant-but-unlogged variables

Availability of diagnostics
(old machines, camera servers, machine subsections)

Input/output parameters need 
to translate directly to what’s 
on the machine (quantitatively) 
— need coordination up front

High-fidelity (e.g. PIC) 
à time-consuming to run

Retention + availability 
of prior results:  

(optimize and throw the 
iterations away!)

How representative of the real 
machine behavior?
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Ideal case: 
- comprehensive, high-resolution data archive
(e.g. including things like ambient temp./pressure)

- excellent log of manual changes

Need a sufficient* amount of reliable* data
(but not as much as is sometimes claimed in DL)

*large enough parameter range and set of examples to 
generalize well and complete the task

*esp. consistent!
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Some Practical Challenges

Training on Measured Data

Training on Simulation Data

Observed parameter range in archived data

Undocumented manual changes 
(e.g. rotating a BPM, Quad)

Relevant-but-unlogged variables

Availability of diagnostics
(old machines, camera servers, machine subsections)

Input/output parameters need 
to translate directly to what’s 
on the machine (quantitatively) 
— need coordination up front

High-fidelity (e.g. PIC) 
à time-consuming to run

Retention + availability 
of prior results:  

(optimize and throw the 
iterations away!)

How representative of the real 
machine behavior?

Deployment

Initial training is on HPC systems à deployment is typically not*
- Execution on front-end: necessary speed + memory?
- Subsequent training: on front-end or transfer to HPC?

Time on machine for characterization studies
(schedule + expense)

Ideal case: 
- comprehensive, high-resolution data archive
(e.g. including things like ambient temp./pressure)

- excellent log of manual changes I/O for large amounts of data

Software compatibility for older systems:
interface with machine + make use of modern ML software libraries

* for now…

Need a sufficient* amount of reliable* data
(but not as much as is sometimes claimed in DL)

*large enough parameter range and set of examples to 
generalize well and complete the task

*esp. consistent!



Auralee Edelen,  ICFA Mini-Workshop on ML for Particle Accelerators,  Feb. 27 – Mar. 3, 2018 at SLAC

Final Notes
• Neural networks are very flexible tools à far more powerful in recent years 
• Most of the real work comes before the actual ML …
• Mostly preliminary results so far, but making progress (+ more infrastructure in place / lessons learned!)

• Lots of opportunities to use neural networks (and ML more broadly) 
• But! Simple direct online optimization + simple model-based approaches in many cases may 

be more appropriate
• Much more interest from the accelerator community in the last couple of years
• Lots of potential for fruitful collaborations! 

Thanks for your attention!

And many thanks to others who contributed to this work!

Sandra Biedron, Daniel Bowring, Brian Chase, Dave Douglas, Jonathan 
Edelen, Dean Edstrom Jr., Denise Finstrom, Dennis Nicklaus, Jinhao
Ruan, James Santucci, Jim Steimel, Chris Tennant, and many others

Also, much of this work relied on Fermilab’s HPC resources (thanks to 
Amitoj Singh,  Alexei Strelchenko, Gerard Bernabeau, and Jim Simone!) 

and CSU’s Summit system
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Recap of Application Areas and Examples
• Model Predictive Control with Neural Network Models

• Especially useful for systems with long-term time 
dependencies 
• PIP-II RFQ
• FAST RF gun

• Modeling using Measured and/or Simulated Data
• Create a fast simulation tool for online modeling

• FAST linac (later talk)
• FEL energy switching study 

• Create models from measured data alone
• JLab trajectory control
• PIP-II RFQ
• FAST RF gun

• Combine observed behavior and a priori knowledge
• FAST linac (later talk), PIP-II RFQ

• Neural Network Control Policies
• Tuning and changing operating state

• JLab FEL trajectory control
• FEL energy switching study (see tomorrow’s talk)

• Learning from existing control policies
• Present PIP-II RFQ work

• Incorporating Image-based Diagnostics Directly 
into Control Policies

• FAST linac study (later talk)

• Virtual Diagnostics
• Predict beam parameters when diagnostic not 

available or not in use
• FAST linac study (later talk)


